확률론

[Mathematical Statistics] 전확률의 법칙과 베이즈 정리
·
Statistics/Mathematical Statistics
분할 (Partition) 표본공간을 상호배타적인 사건들의 합사건으로 표현할 수 있다. 이때 상호배타적인 사건들의 모임을 표본공간의 분할이라 한다. 상호배타적 사건이라는 것은 $ A \cap B = \emptyset $ 을 만족하는 사건을 말한다. 이러한 분할은 아래와 같이 표현할 수 있다.$$ \bigcup_{i=1}^{\infty} B_i = B_1 \cup B_2 \cdots = S \quad (\forall {i \neq j} , B_i \cap B_j = \emptyset ) $$ 전확률의 법칙 (Law of Total Probability) $ \{ B_1, B_2, \cdots , B_k \} $ 가 $ S $ 의 분할이고, 모든 $ j $ 에 대하여 $ P(B_j) > 0 $ 이면 다음이 ..
[Mathematical Statistics] 확률의 정의와 조건부확률 및 확률법칙
·
Statistics/Mathematical Statistics
기본 용어 확률 실험 (Random Experiment)실험결과가 확률적으로 나타나는 실험으로 관측값을 생성하는 과정을 말한다.$ S $ or $ \Omega $ | 표본공간 (Sample Space)모든 가능한 표본점들로 이루어진 집합, 즉 확률실험에서 얻을 수 있는 모든 가능한 결과 집합이다.표본공간에 포함되는 결과들은 완전하고 상호배타적이어야 한다. 완전하다(exhaustive)는 것은 나열된 결과들은 모든 가능한 결과들을 포함한다는 뜻이고, 상호배타적(mutually exclusive)이라는 것은 두 가지 결과가 동시에 발생할 수 없다는 뜻이다.사건 (Event)표본공간의 부분집합으로 확률실험의 결과가 사건 집합의 원소이면 사건이 일어났다는 뜻이다.$ P $ | 확률함수 (Probabililty ..
애스터로이드
'확률론' 태그의 글 목록 (3 Page)